Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2025, Volume 18, Issue 2, Pages 262–272 (Mi jsfu1241)  

Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces

Ahmad Al-Omaria, Takashi Noirib

a Department of Mathematics, Faculty of Sciences, Al al-Bayt University, Mafraq 25113, Jordan
b Yatsushiro-shi, Kumamoto-ken, Japan
References:
Abstract: Let $(X, m, \mathcal{H})$ be a hereditary $m$-space. A subset $A$ of $X$ is said to be $\mathcal{H}$-compact relative to $X$ if for every cover $\mathcal U$ of $A$ by $m$-open sets of $X$, there exists a finite subset $\mathcal{U}_0$ of $\mathcal{U}$ such that $A \setminus \cup\ \mathcal{U}_0 \in$ $\mathcal{H}$. We obtain several properties of these sets. And also, we define and investigate two kinds of strong forms of $\mathcal{H}$-compact relative to $X$.
Keywords: hereditary $m$-space, $\mathcal H$-compactness, strong $\mathcal H$-compactness, super $\mathcal H$-compactness.
Received: 01.10.2024
Received in revised form: 06.11.2024
Accepted: 10.01.2025
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: Ahmad Al-Omari, Takashi Noiri, “Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces”, J. Sib. Fed. Univ. Math. Phys., 18:2 (2025), 262–272
Citation in format AMSBIB
\Bibitem{Al-Noi25}
\by Ahmad~Al-Omari, Takashi~Noiri
\paper Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2025
\vol 18
\issue 2
\pages 262--272
\mathnet{http://mi.mathnet.ru/jsfu1241}
\edn{https://elibrary.ru/OTALKL}
Linking options:
  • https://www.mathnet.ru/eng/jsfu1241
  • https://www.mathnet.ru/eng/jsfu/v18/i2/p262
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :74
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025