|
|
Zhurnal Tekhnicheskoi Fiziki, 2015, Volume 85, Issue 1, Pages 87–97
(Mi jtf7662)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Solids
Stable overload conditions of high-temperature superconductors at alternating current injection
V. R. Romanovskii National Research Centre "Kurchatov Institute", Moscow
Abstract:
The stability of alternating current injected into a high-temperature superconductor or into a current-carrying element on its basis is studied under weak cooling. The stability conditions of the current varying with time by a sinusoidal law are studied versus its frequency. It is shown that before unstable states set in, the peak values of the electric field intensity, current, and temperature in the superconductor are higher than the values determining a thermal electrodynamic stability boundary of the current permanently flowing through the superconductor–the so-called thermal quench current. It is found that ultimate stable alternating currents cause high stable thermal losses in superconductors; these losses being not considered in the modern theory of losses. Such stable conditions can be referred to as overload conditions. Analysis shows that there are characteristic times determining the time intervals within which alternating current is stable under overload conditions. Main thermoelectrodynamic mechanisms behind the existence of these intervals are formulated. They explain why the superconductor stable overheating and induced electric field reach high values before the injected alternating current becomes unstable. The existence of overload conditions considerably extends the application area of high-temperature superconductors.
Received: 05.06.2014
Citation:
V. R. Romanovskii, “Stable overload conditions of high-temperature superconductors at alternating current injection”, Zhurnal Tekhnicheskoi Fiziki, 85:1 (2015), 87–97; Tech. Phys., 60:1 (2015), 86–95
Linking options:
https://www.mathnet.ru/eng/jtf7662 https://www.mathnet.ru/eng/jtf/v85/i1/p87
|
|