Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2000, Volume 7, Pages 15–29 (Mi ljm136)  

This article is cited in 2 scientific papers (total in 2 papers)

The cauchy integral along $\Phi$-rectifiable curves

B. A. Kats

Kazan State Academy of Architecture and Construction
Full-text PDF (208 kB) Citations (2)
Abstract: The paper treats existence and boundary properties of the Cauchy integral over certain classes of non-rectifiable curves. These classes contain, in particular, known fractal curves: von Koch snowflakes, Weierstrass curves, lacunary wavelet trajectories and so on.
Submitted by: A. M. Elizarov
Received: 05.07.2000
Bibliographic databases:
Language: English
Citation: B. A. Kats, “The cauchy integral along $\Phi$-rectifiable curves”, Lobachevskii J. Math., 7 (2000), 15–29
Citation in format AMSBIB
\Bibitem{Kat00}
\by B.~A.~Kats
\paper The cauchy integral along $\Phi$-rectifiable curves
\jour Lobachevskii J. Math.
\yr 2000
\vol 7
\pages 15--29
\mathnet{http://mi.mathnet.ru/ljm136}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1808893}
\zmath{https://zbmath.org/?q=an:0969.30020}
Linking options:
  • https://www.mathnet.ru/eng/ljm136
  • https://www.mathnet.ru/eng/ljm/v7/p15
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :188
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025