Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2016, Volume 23, Number 1, Pages 5–11
DOI: https://doi.org/10.18255/1818-1015-2016-1-5-11
(Mi mais479)
 

Asymptotic formula for the moments of Takagi function

E. A. Timofeev

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
References:
Abstract: Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by
$$ T(x) = \sum_{k=0}^{\infty}2^{-n}\rho(2^nx), $$
where
$$ \rho(x) = \min_{k\in \mathbb{Z}}|x-k|. $$
The moments of Takagi function are defined as
$$ M_n = \int_0^1\,x^n T(x)\,dx. $$
The main result of this paper is the following:
$$ M_n = \frac{\ln n - \Gamma'(1)-\ln\pi}{n^2\ln 2}+\frac{1}{2n^2} +\frac{2}{n^2\ln 2} \phi(n) + \mathcal{O}(n^{-2.99}), $$
where
$$ \phi(x) = \sum_{k\ne 0} \Gamma\left(\frac{2\pi i k}{\ln 2}\right)\zeta\left(\frac{2\pi i k}{\ln 2}\right)x^{-\frac{2\pi i k}{\ln 2}}. $$
Keywords: moments, self-similar, Takagi function, singular, Mellin transform, asymptotic.
Received: 20.12.2015
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: E. A. Timofeev, “Asymptotic formula for the moments of Takagi function”, Model. Anal. Inform. Sist., 23:1 (2016), 5–11
Citation in format AMSBIB
\Bibitem{Tim16}
\by E.~A.~Timofeev
\paper Asymptotic formula for the moments of Takagi function
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 1
\pages 5--11
\mathnet{http://mi.mathnet.ru/mais479}
\crossref{https://doi.org/10.18255/1818-1015-2016-1-5-11}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3502271}
\elib{https://elibrary.ru/item.asp?id=25475536}
Linking options:
  • https://www.mathnet.ru/eng/mais479
  • https://www.mathnet.ru/eng/mais/v23/i1/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025