Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2017, Volume 24, Number 4, Pages 508–515
DOI: https://doi.org/10.18255/1818-1015-2017-4-508-515
(Mi mais580)
 

This article is cited in 1 scientific paper (total in 1 paper)

The expansion of self-similar functions in the Faber–Schauder system

E. A. Timofeev

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russia
Full-text PDF (589 kB) Citations (1)
References:
Abstract: Let $\Omega = {\mathcal A}^{{\mathbb N}}$ be a space of right-sided infinite sequences drawn from a finite alphabet ${\mathcal A} = \{0,1\}$, ${\mathbb N} = \{1,2,\dots \} $. Let
$$ \rho(\mathbf{x},\mathbf{y}) = \sum_{k=1}^{\infty}|x_{k} - y_{k}|2^{-k} $$
be a metric on $\Omega = {\mathcal A}^{{\mathbb N}}$, and $\mu$ the Bernoulli measure on $\Omega$ with probabilities $p_0,p_1>0$, $p_0+p_1=1$. Denote by $B(\mathbf{x},\omega)$ an open ball of radius $r$ centered at $\mathbf{\omega}$. The main result of this paper is
$$ \mu\left(B(\mathbf{\omega},r)\right) = r+\sum_{n=0}^{\infty}\sum_{j=0}^{2^n-1}\mu_{n,j}(\mathbf{\omega})\tau(2^nr-j), $$
where $\tau(x) =2\min\{x,1-x\}$, $0\leq x \leq 1$, ($\tau(x) = 0$, if $x<0$ or $x>1$),
$$ \mu_{n,j}(\mathbf{\omega}) = \left(1-p_{\omega_{n+1}}\right) \prod_{k=1}^n p_{\omega_k\oplus j_k},\ \ j = j_12^{n-1}+j_22^{n-2}+\dots+j_n. $$
The family of functions $1,x,\tau(2^nr-j)$, $j =0,1,\dots,2^n-1$, $n=0,1,\dots$, is the Faber–Schauder system for the space $C([0, 1])$ of continuous functions on $[0, 1]$. We also obtain the Faber–Schauder expansion for the Lebesgue's singular function, Cezaro curves, and Koch–Peano curves.
Keywords: Faber–Schauder system, Haar wavelet, self-similar, Lebesgue's function.
Received: 06.07.2017
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: E. A. Timofeev, “The expansion of self-similar functions in the Faber–Schauder system”, Model. Anal. Inform. Sist., 24:4 (2017), 508–515
Citation in format AMSBIB
\Bibitem{Tim17}
\by E.~A.~Timofeev
\paper The expansion of self-similar functions in the Faber--Schauder system
\jour Model. Anal. Inform. Sist.
\yr 2017
\vol 24
\issue 4
\pages 508--515
\mathnet{http://mi.mathnet.ru/mais580}
\crossref{https://doi.org/10.18255/1818-1015-2017-4-508-515}
\elib{https://elibrary.ru/item.asp?id=29864501}
Linking options:
  • https://www.mathnet.ru/eng/mais580
  • https://www.mathnet.ru/eng/mais/v24/i4/p508
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025