Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2022, Volume 29, Number 2, Pages 92–103
DOI: https://doi.org/10.18255/1818-1015-2022-2-92-103
(Mi mais769)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics in relation to computer science

On some estimate for the norm of an interpolation projector

M. V. Nevskij

P. G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia
Full-text PDF (600 kB) Citations (1)
References:
Abstract: Let $Q_n=[0,1]^n$ be the unit cube in ${\mathbb R}^n$ and let $C(Q_n)$ be a space of continuous functions $f:Q_n\to{\mathbb R}$ with the norm $\|f\|_{C(Q_n)}:=\max_{x\in Q_n}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ denote a set of polynomials in $n$ variables of degree $\leq 1$, i. e., a set of linear functions on ${\mathbb R}^n$. The interpolation projector $P:C(Q_n)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in Q_n$ is defined by the equalities $Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right)$, $j=1,$ $\ldots,$ $ n+1$. Let $\|P\|_{Q_n}$ be the norm of $P$ as an operator from $C(Q_n)$ to $C(Q_n)$. If $n+1$ is an Hadamard number, then there exists a non-degenerate regular simplex having the vertices at vertices of $Q_n$. We discuss some approaches to get inequalities of the form $||P||_{Q_n}\leq c\sqrt{n}$ for the norm of the corresponding projector $P$.
Keywords: Hadamard matrix, regular simplex, linear interpolation, projector, norm.
Received: 06.05.2022
Revised: 30.05.2022
Accepted: 01.06.2022
Bibliographic databases:
Document Type: Article
UDC: 514.17, 517.51, 519.6
MSC: 41A05, 52B55, 52C07
Language: Russian
Citation: M. V. Nevskij, “On some estimate for the norm of an interpolation projector”, Model. Anal. Inform. Sist., 29:2 (2022), 92–103
Citation in format AMSBIB
\Bibitem{Nev22}
\by M.~V.~Nevskij
\paper On some estimate for the norm of an interpolation projector
\jour Model. Anal. Inform. Sist.
\yr 2022
\vol 29
\issue 2
\pages 92--103
\mathnet{http://mi.mathnet.ru/mais769}
\crossref{https://doi.org/10.18255/1818-1015-2022-2-92-103}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4456624}
Linking options:
  • https://www.mathnet.ru/eng/mais769
  • https://www.mathnet.ru/eng/mais/v29/i2/p92
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025