Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2024, Volume 31, Number 2, Pages 182–193
DOI: https://doi.org/10.18255/1818-1015-2024-2-182-193
(Mi mais823)
 

Artificial intelligence

UAV detection using neural networks

M. D. Averinaa, O. A. Levanovaa, D. V. Grushevskayaa, K. A. Kukhareva, D. M. Murina, M. A. Kalininb

a P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
b National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: The availability of unmanned aerial vehicles (UAVs) has led to a significant increase in the number of offenses involving their use. This makes the development of UAV detection systems relevant. Solutions based on deep neural networks show the best results in detecting UAVs on video. This article presents a study of various neural network detectors and focuses on identifying objects as small as possible, up to the size of 4$\times$4 and even 3$\times$3 pixels. The work investigates architectures SSD (VGG16) and YOLOv3 and it's modifications. Precision and recall metrics are calculated separately for different intervals of the object areas. The best result have been shown by YOLOv3 model with bbox parameters chosen as the result of object sizes clustering. Small (3$\times$3 px) drones have been successfully identified with 76% precision and a very small recall of 26%. For objects between 10 and 20 pixels in area, the recall is 64% with an accuracy of 75%. For objects with an area more than 20px the recall is about 90%, the precision is 89%, and the F1 score is 90%. These results show that it is possible to recognize even 4$\times$4 pixel drones, which can be used in video surveillance systems.
Keywords: UAV detection.
Funding agency Grant number
Yaroslavl State University VIP-016
Yaroslavl State University (project VIP-016).
Received: 06.05.2024
Revised: 24.05.2024
Accepted: 29.05.2024
Document Type: Article
UDC: 004.93’12
MSC: 68T07
Language: Russian
Citation: M. D. Averina, O. A. Levanova, D. V. Grushevskaya, K. A. Kukharev, D. M. Murin, M. A. Kalinin, “UAV detection using neural networks”, Model. Anal. Inform. Sist., 31:2 (2024), 182–193
Citation in format AMSBIB
\Bibitem{AveLevGru24}
\by M.~D.~Averina, O.~A.~Levanova, D.~V.~Grushevskaya, K.~A.~Kukharev, D.~M.~Murin, M.~A.~Kalinin
\paper UAV detection using neural networks
\jour Model. Anal. Inform. Sist.
\yr 2024
\vol 31
\issue 2
\pages 182--193
\mathnet{http://mi.mathnet.ru/mais823}
\crossref{https://doi.org/10.18255/1818-1015-2024-2-182-193}
Linking options:
  • https://www.mathnet.ru/eng/mais823
  • https://www.mathnet.ru/eng/mais/v31/i2/p182
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025