|
This article is cited in 24 scientific papers (total in 24 papers)
Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds
A. A. Agrachevab, P. W. Y. Leec a International School for Advanced Studies, via Beirut 4, 34014 Trieste, Italy
b Steklov Mathematical Institute, ul. Gubkina 8, Moscow 119991, Russia
c The Chinese University of Hong Kong, Room 216, Lady Shaw Building, Shatin, Hong Kong
Abstract:
Measure contraction property is one of the possible generalizations of Ricci
curvature bound to more general metric measure spaces. In this paper, we discover
necessary and sufficient conditions for a three dimensional contact subriemannian
manifold to satisfy this property.
Received: 27.03.2012 Revised: 27.01.2014
Linking options:
https://www.mathnet.ru/eng/matan3
|
|