Mendeleev Communications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mendeleev Commun.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mendeleev Communications, 2021, Volume 31, Issue 6, Pages 769–780
DOI: https://doi.org/10.1016/j.mencom.2021.11.003
(Mi mendc1040)
 

This article is cited in 12 scientific papers (total in 12 papers)

Focus Article

Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow

T. I. Madzhidova, A. Rakhimbekovaa, V. A. Afoninaa, T. R. Gimadievb, R. N. Mukhametgalieva, R. I. Nugmanova, I. I. Baskinc, A. Varnekbd

a Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
b Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
c Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa, Israel
d Laboratoire de Modelisation et Simulations Moleculaires, Universite Louis Pasteur, Strasbourg, France
Abstract: The synthesis of the desired chemical compound is the main task of synthetic organic chemistry. The predictions of reaction conditions and some important quantitative characteristics of chemical reactions as yield and reaction rate can substantially help in the development of optimal synthetic routes and assessment of synthesis cost. Theoretical assessment of these parameters can be performed with the help of modern machine-learning approaches, which use available experimental data to develop predictive models called quantitative or qualitative structure–reactivity relationship (QSRR) modelling. In the article, we review the state-of-the-art in the QSRR area and give our opinion on emerging trends in this field.
Keywords: chemoinformatics, reaction informatics, chemical reaction, reaction yield, reaction rate, reaction conditions, QSAR, QSPR, QSRR.
Bibliographic databases:
Document Type: Article
Language: English
Supplementary materials:
Supplementary_data_1.pdf (253.1 Kb)


Citation: T. I. Madzhidov, A. Rakhimbekova, V. A. Afonina, T. R. Gimadiev, R. N. Mukhametgaliev, R. I. Nugmanov, I. I. Baskin, A. Varnek, “Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow”, Mendeleev Commun., 31:6 (2021), 769–780
Linking options:
  • https://www.mathnet.ru/eng/mendc1040
  • https://www.mathnet.ru/eng/mendc/v31/i6/p769
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025