Mendeleev Communications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mendeleev Commun.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mendeleev Communications, 2024, Volume 34, Issue 6, Pages 774–775
DOI: https://doi.org/10.1016/j.mencom.2024.10.002
(Mi mendc247)
 

Communications

Deep machine learning for STEM image analysis

A. V. Nartovaab, A. V. Matveeva, L. M. Kovtunovaab, A. G. Okuneva

a Department of Chemistry, Novosibirsk State University, Novosibirsk, Russian Federation
b G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
Abstract: The universal, user-friendly online iOk Platform for automatic recognition of any type of objects in images based on deep machine learning is presented. Services aggregated in the iOk Platform significantly reduce the time spent on quantitative image analysis, decrease the influence of the subjective factor and increase the accuracy of the analysis by expanding the set of data that can be analyzed automatically. It is shown how the services can be used to analyze scanning transmission electron microscopy images obtained in heterogeneous catalysis studies, allowing for measurements of thousands of objects in an image, as well as simultaneous analysis of objects of different types, namely: nanoparticles and single sites.
Keywords: deep machine learning, STEM, automatic recognition of objects, supported catalysts, neural network, microscopy, image analysis.
Bibliographic databases:
Document Type: Article
Language: English


Citation: A. V. Nartova, A. V. Matveev, L. M. Kovtunova, A. G. Okunev, “Deep machine learning for STEM image analysis”, Mendeleev Commun., 34:6 (2024), 774–775
Linking options:
  • https://www.mathnet.ru/eng/mendc247
  • https://www.mathnet.ru/eng/mendc/v34/i6/p774
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
    Statistics & downloads:
    Abstract page:88
    Full-text PDF :45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025