Mendeleev Communications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mendeleev Commun.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mendeleev Communications, 2024, Volume 34, Issue 6, Pages 776–779
DOI: https://doi.org/10.1016/j.mencom.2024.10.003
(Mi mendc248)
 

Communications

Towards accurate machine learning predictions of properties of the P–O bond cleaving in ATP upon enzymatic hydrolysis

I. V. Polyakova, K. D. Miroshnichenkoa, T. I. Mulashkinaa, A. A. Moskovskya, E. I. Marchenkob, M. G. Khrenovaac

a Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
b Department of Materials Science, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
c A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russian Federation
Abstract: Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzyme–substrate complex to predict the Laplacian of electron density at the bond critical point of the PG–O3B bond being broken in ATP. Using a gradient boosting machine learning model, a mean absolute error of 0.01 a.u. and an R2 score of 0.99 are achieved, and it is found that the PG–O3B bond length is the most important feature, contributing 2/3, while other geometry features contribute 1/3.
Keywords: machine learning, myosin, ATP hydrolysis, QM/MM molecular dynamics, Laplacian of electron density.
Bibliographic databases:
Document Type: Article
Language: English
Supplementary materials:
Supplementary_data_1.pdf (1.9 Mb)


Citation: I. V. Polyakov, K. D. Miroshnichenko, T. I. Mulashkina, A. A. Moskovsky, E. I. Marchenko, M. G. Khrenova, “Towards accurate machine learning predictions of properties of the P–O bond cleaving in ATP upon enzymatic hydrolysis”, Mendeleev Commun., 34:6 (2024), 776–779
Linking options:
  • https://www.mathnet.ru/eng/mendc248
  • https://www.mathnet.ru/eng/mendc/v34/i6/p776
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025