Mendeleev Communications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mendeleev Commun.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mendeleev Communications, 2024, Volume 34, Issue 6, Pages 780–782
DOI: https://doi.org/10.1016/j.mencom.2024.10.004
(Mi mendc249)
 

This article is cited in 2 scientific papers (total in 2 papers)

Communications

Machine learning-enabled prediction of ecotoxicity (EC50) of diverse organic compounds via infrared spectroscopy

M. Yu. Sidorova, M. E. Gasanovb, A. A. Dzeranovac, L. S. Bondarenkoa, A. P. Kiryushinad, V. A. Terekhovae, G. I. Dzhardimalievaac, K. A. Kydralievaa

a Moscow Aviation Institute (National Research University), Moscow, Russian Federation
b Skolkovo Institute of Science and Technology, Moscow, Russian Federation
c Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation
d A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
e Department of Soil Science, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
Full-text PDF (343 kB) Citations (2)
Abstract: A new, less time-consuming and resource-intensive approach to predicting the EC50 ecotoxicity index, which is crucial for assessing the impact of compounds on ecosystems, is proposed. Efficient EC50 prediction based on infrared spectroscopy data and EC50 values from the EcoTOX database is achieved using machine learning. The best results with an F1-score of 0.83 were obtained with the SVC and XGBoost models.
Keywords: ecotoxicology, effective concentration, EC50, feature importance, infrared spectroscopy, algae, machine learning.
Bibliographic databases:
Document Type: Article
Language: English


Citation: M. Yu. Sidorov, M. E. Gasanov, A. A. Dzeranov, L. S. Bondarenko, A. P. Kiryushina, V. A. Terekhova, G. I. Dzhardimalieva, K. A. Kydralieva, “Machine learning-enabled prediction of ecotoxicity (EC50) of diverse organic compounds via infrared spectroscopy”, Mendeleev Commun., 34:6 (2024), 780–782
Linking options:
  • https://www.mathnet.ru/eng/mendc249
  • https://www.mathnet.ru/eng/mendc/v34/i6/p780
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025