Mendeleev Communications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mendeleev Commun.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mendeleev Communications, 2024, Volume 34, Issue 6, Pages 786–787
DOI: https://doi.org/10.1016/j.mencom.2024.10.006
(Mi mendc251)
 

Communications

Contrastive representation learning for spectroscopy data analysis

A. P. Vorozhtsov, P. V. Kitina

Department of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
Abstract: Metric-based representation learning showed good accuracy in identifying objects from one-dimensional spectroscopy data, robustness to small dataset size and the ability to change the data domain without fine-tuning.
Keywords: spectroscopy, machine learning, representation learning, neural network, metric learning, spectra analysis.
Bibliographic databases:
Document Type: Article
Language: English
Supplementary materials:
Supplementary_data_1.pdf (854.8 Kb)


Citation: A. P. Vorozhtsov, P. V. Kitina, “Contrastive representation learning for spectroscopy data analysis”, Mendeleev Commun., 34:6 (2024), 786–787
Linking options:
  • https://www.mathnet.ru/eng/mendc251
  • https://www.mathnet.ru/eng/mendc/v34/i6/p786
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025