Mendeleev Communications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mendeleev Commun.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mendeleev Communications, 2024, Volume 34, Issue 6, Pages 788–791
DOI: https://doi.org/10.1016/j.mencom.2024.10.007
(Mi mendc252)
 

This article is cited in 1 scientific paper (total in 1 paper)

Communications

Towards machine learning prediction of the fluorescent protein absorption spectra

R. A. Stepanyukab, I. V. Polyakovac, A. M. Kulakovaa, E. I. Marchenkod, M. G. Khrenovaab

a Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
b Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russian Federation
c N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
d Department of Materials Science, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
Abstract: We demonstrate that machine learning models trained on a set of features obtained from QM/MM molecular dynamic trajectories of fluorescent proteins can be used to predict the chromophore dipole moment variation upon excitation, the quantity related to the electronic excitation energy. Linear regression, gradient boosting, and artificial neural network- based models were considered using cross-validation on the training dataset. Gradient boosting approach proved to be the most accurate for both internal (R2 = 0.77) and external (R2 = 0.7) test sets.
Keywords: machine learning, fluorescent proteins, QM/MM molecular dynamics, dipole moment variation upon excitation.
Bibliographic databases:
Document Type: Article
Language: English
Supplementary materials:
Supplementary_data_1.pdf (1.0 Mb)


Citation: R. A. Stepanyuk, I. V. Polyakov, A. M. Kulakova, E. I. Marchenko, M. G. Khrenova, “Towards machine learning prediction of the fluorescent protein absorption spectra”, Mendeleev Commun., 34:6 (2024), 788–791
Linking options:
  • https://www.mathnet.ru/eng/mendc252
  • https://www.mathnet.ru/eng/mendc/v34/i6/p788
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025