Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2013, Volume 5, Issue 1, Pages 104–123 (Mi mgta106)  

This article is cited in 4 scientific papers (total in 4 papers)

On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations

Andrey V. Chernov

Nizhnii Novgorod State Technical University
Full-text PDF (548 kB) Citations (4)
References:
Abstract: The paper is devoted to justification of some comparatively simple algorithm for construction of the Nash $\varepsilon$-equilibrium in noncooperative $n$-person games associated with evolutionary semilinear partial differential equations. Here, we consider piecewise program strategies, the time step is assumed to be fixed and controls are assumed to be piecewise constant vectors with values from a given compact set in a finite dimensional space. The main idea of the algorithm consists in the approximation of an original game by a finite multistep perfect information game with subsequent applying of the Kuhn algorithm. The basis of the algorithm under study consists in two assertions concerning, firstly, the total preservation of global solvability of controlled distributed parameter systems, and, secondly, the continuous dependence of solutions to them on piecewise constant controls, both having been proved by the author formerly. The paper is conducted on the example of the first boundary value problem associated with a parabolic second order equation of a rather general form.
Keywords: noncooperative $n$-person game, semilinear partial differential equations, piecewise program strategies, piecewise constant controls, $\varepsilon$-equilibrium.
Document Type: Article
UDC: 517.957+517.988+519.833.2+519.837
BBC: 22.18
Language: Russian
Citation: Andrey V. Chernov, “On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations”, Mat. Teor. Igr Pril., 5:1 (2013), 104–123
Citation in format AMSBIB
\Bibitem{Che13}
\by Andrey~V.~Chernov
\paper On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations
\jour Mat. Teor. Igr Pril.
\yr 2013
\vol 5
\issue 1
\pages 104--123
\mathnet{http://mi.mathnet.ru/mgta106}
Linking options:
  • https://www.mathnet.ru/eng/mgta106
  • https://www.mathnet.ru/eng/mgta/v5/i1/p104
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025