Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1998, Volume 10, Number 3, Pages 117–124 (Mi mm1262)  

Computational methods and algorithms

Second-order learning methods for a multilayer perceptron

V. V. Ivanov, B. Purevdorj, I. V. Puzynin

Joint Institute for Nuclear Research
Abstract: First-and second-order learning methods for feed-forward multilayer networks are studied. Newtontype and quasi-Newton algorithms are considered and compared with commonly used backpropagation algorithm. It is shown that, although second-order algorithms reguire enhanced computer facilities, they provide better convergence and simplicity in usage.
Received: 21.10.1996
Language: Russian
Citation: V. V. Ivanov, B. Purevdorj, I. V. Puzynin, “Second-order learning methods for a multilayer perceptron”, Mat. Model., 10:3 (1998), 117–124
Citation in format AMSBIB
\Bibitem{IvaPurPuz98}
\by V.~V.~Ivanov, B.~Purevdorj, I.~V.~Puzynin
\paper Second-order learning methods for a~multilayer perceptron
\jour Mat. Model.
\yr 1998
\vol 10
\issue 3
\pages 117--124
\mathnet{http://mi.mathnet.ru/mm1262}
Linking options:
  • https://www.mathnet.ru/eng/mm1262
  • https://www.mathnet.ru/eng/mm/v10/i3/p117
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025