Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1992, Volume 4, Number 8, Pages 85–93 (Mi mm2105)  

Computational methods and algorithms

The distribution functions of the $\omega_n^3=n^{3/2}\int_{-\infty}^\infty[S_n(x)-P(x)]^3\,dP(x)$ statistic for small $n$

P. V. Zrelov, V. V. Ivanov

Joint Institute for Nuclear Research
Abstract: A numerical method of the distribution function calculation of a new nonparametric $\omega_n^3$ statistic for small sample sizes is considered. It allowed to calculate with a high accuracy the percentage points for $n=1,2,\dots,10$.
Received: 30.04.1992
Bibliographic databases:
Language: Russian
Citation: P. V. Zrelov, V. V. Ivanov, “The distribution functions of the $\omega_n^3=n^{3/2}\int_{-\infty}^\infty[S_n(x)-P(x)]^3\,dP(x)$ statistic for small $n$”, Mat. Model., 4:8 (1992), 85–93
Citation in format AMSBIB
\Bibitem{ZreIva92}
\by P.~V.~Zrelov, V.~V.~Ivanov
\paper The distribution functions of the $\omega_n^3=n^{3/2}\int_{-\infty}^\infty[S_n(x)-P(x)]^3\,dP(x)$ statistic for small~$n$
\jour Mat. Model.
\yr 1992
\vol 4
\issue 8
\pages 85--93
\mathnet{http://mi.mathnet.ru/mm2105}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1204170}
\zmath{https://zbmath.org/?q=an:1189.62013}
Linking options:
  • https://www.mathnet.ru/eng/mm2105
  • https://www.mathnet.ru/eng/mm/v4/i8/p85
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025