Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1991, Volume 3, Number 12, Pages 107–114 (Mi mm2309)  

This article is cited in 1 scientific paper (total in 1 paper)

Computational methods and algorithms

Generalized solutions to the Cauchy problem for the system for surface waves in the conservative case

E. I. Kaikina
Full-text PDF (503 kB) Citations (1)
Abstract: The Cauchy problem for the system of equations for surface waves is considered. If the initial data are small enough the existence of generalized solutions for the Cauchy problem for the system of equations, describing surface waves, is proved.
Received: 25.06.1991
Bibliographic databases:
Language: Russian
Citation: E. I. Kaikina, “Generalized solutions to the Cauchy problem for the system for surface waves in the conservative case”, Mat. Model., 3:12 (1991), 107–114
Citation in format AMSBIB
\Bibitem{Kai91}
\by E.~I.~Kaikina
\paper Generalized solutions to the Cauchy problem for the system for surface waves in the conservative case
\jour Mat. Model.
\yr 1991
\vol 3
\issue 12
\pages 107--114
\mathnet{http://mi.mathnet.ru/mm2309}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1164830}
Linking options:
  • https://www.mathnet.ru/eng/mm2309
  • https://www.mathnet.ru/eng/mm/v3/i12/p107
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025