Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2005, Volume 17, Number 7, Pages 23–30 (Mi mm2768)  

This article is cited in 3 scientific papers (total in 3 papers)

Numeric solution of heat conduction problem for friction couples having low interference coefficient

N. P. Starostin

Institute of Nonmetallic Materials SB RAS
Full-text PDF (289 kB) Citations (3)
References:
Abstract: The problem of heat conduction with frictional heat release is solved using the method of finite differences. A pair of contacting bodies, whose ratios of friction surface square values are small, is discussed. The results of computation of non-stationary temperature field at diamond polishing with the diamond disk containing charged layer are presented.
Received: 24.01.2005
Bibliographic databases:
Language: Russian
Citation: N. P. Starostin, “Numeric solution of heat conduction problem for friction couples having low interference coefficient”, Mat. Model., 17:7 (2005), 23–30
Citation in format AMSBIB
\Bibitem{Sta05}
\by N.~P.~Starostin
\paper Numeric solution of heat conduction problem for friction couples having low interference coefficient
\jour Mat. Model.
\yr 2005
\vol 17
\issue 7
\pages 23--30
\mathnet{http://mi.mathnet.ru/mm2768}
\zmath{https://zbmath.org/?q=an:1087.80003}
Linking options:
  • https://www.mathnet.ru/eng/mm2768
  • https://www.mathnet.ru/eng/mm/v17/i7/p23
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:736
    Full-text PDF :511
    References:87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025