Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2011, Volume 23, Number 8, Pages 127–136 (Mi mm3148)  

Vector and tensor Reynolds's stress

A. N. Volobuev

Samara State Medical University, Dept. of Medical and Biological Physics, Samara
References:
Abstract: The problem of asymmetry stress tensor is considered. The mechanism of beginning of turbulence in a stream is shown. On the basis of the vector form of the Newton’s law for a viscous liquid it is entered the tensor the generalized factor of viscosity which components take into account both molecular viscosity, and turbulent viscosity. It is shown, that Reynolds's turbulent stress can be submitted as a vector of stress of Reynolds. Formula for Reynolds's stress in approximation of a boundary layer is found.
Keywords: turbulence, Reynolds's stress tensor, viscosity tensor, quantum effects.
Received: 14.02.2011
English version:
Mathematical Models and Computer Simulations, 2012, Volume 4, Issue 2, Pages 181–186
DOI: https://doi.org/10.1134/S2070048212020147
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Volobuev, “Vector and tensor Reynolds's stress”, Mat. Model., 23:8 (2011), 127–136; Math. Models Comput. Simul., 4:2 (2012), 181–186
Citation in format AMSBIB
\Bibitem{Vol11}
\by A.~N.~Volobuev
\paper Vector and tensor Reynolds's stress
\jour Mat. Model.
\yr 2011
\vol 23
\issue 8
\pages 127--136
\mathnet{http://mi.mathnet.ru/mm3148}
\transl
\jour Math. Models Comput. Simul.
\yr 2012
\vol 4
\issue 2
\pages 181--186
\crossref{https://doi.org/10.1134/S2070048212020147}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928994414}
Linking options:
  • https://www.mathnet.ru/eng/mm3148
  • https://www.mathnet.ru/eng/mm/v23/i8/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025