|
Evaluation of eigenvalues and eigenfunctions of Coulomb spheroidal wave equation
S. L. Skorokhodov Dorodnicyn Computing Centre of RAS, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
Abstract:
A method for evaluation the eigenvalues $\lambda_{m,q}(b,c)$ and the eigenfunctions of Coulomb spheroidal wave equation in a case of complex parameters $b$ and $c$ is proposed. The method is based on construction of two expansions of solution at the singular points $\eta=\pm1$ and on matching of the expansions at the point $\eta=0$. Numerical experiments show that there exist branching points of the eigenvalues $\lambda_{m,q}(b,c)$ for some complex values $b$ or $c$, the order of the branching points is equal $2$.
Keywords:
Coulomb spheroidal wave functions, complex parameters, evaluation of eigenvalues, branching points.
Received: 30.03.2015
Citation:
S. L. Skorokhodov, “Evaluation of eigenvalues and eigenfunctions of Coulomb spheroidal wave equation”, Mat. Model., 27:7 (2015), 111–116
Linking options:
https://www.mathnet.ru/eng/mm3630 https://www.mathnet.ru/eng/mm/v27/i7/p111
|
|