Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2017, Volume 29, Number 11, Pages 3–18 (Mi mm3904)  

This article is cited in 1 scientific paper (total in 1 paper)

The analytical investigation of hydraulic fracture dynamics according to the incomplete coupling principle

M. M. Ramazanovab, A. V. Karakinbc, V. E. Borisovb

a Institute for Geothermal Problems of the Dagestan Scientific Center RAS
b Keldysh Institute of Applied Mathematics RAS
c Oil and Gas Research Institute RAS
Full-text PDF (369 kB) Citations (1)
References:
Abstract: In the paper we present a self-similar solution of the coupling problem about slow movement in the hydraulic fracture and corresponding deformation and fluid percolation in the external medium. These movements are generated with fluid uploading into well. The flow in a crack is described with the hydrodynamics Stokes equations in the approach of the lubricating layer. The outer problem is described with the poroelasticity equations. We consider an option of the heterogeneous pressure into a crack in three- and two-dimensions. In the second case one can have the self-similar solution in the analytical form.
Keywords: hydraulic fracture problem, self-similar solution, incomplete coupling principle, equilibrium crack.
Funding agency Grant number
Russian Science Foundation 15-11-00021
Received: 03.10.2016
English version:
Mathematical Models and Computer Simulations, 2018, Volume 10, Issue 3, Pages 322–332
DOI: https://doi.org/10.1134/S2070048218030110
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. M. Ramazanov, A. V. Karakin, V. E. Borisov, “The analytical investigation of hydraulic fracture dynamics according to the incomplete coupling principle”, Mat. Model., 29:11 (2017), 3–18; Math. Models Comput. Simul., 10:3 (2018), 322–332
Citation in format AMSBIB
\Bibitem{RamKarBor17}
\by M.~M.~Ramazanov, A.~V.~Karakin, V.~E.~Borisov
\paper The analytical investigation of hydraulic fracture dynamics according to the incomplete coupling principle
\jour Mat. Model.
\yr 2017
\vol 29
\issue 11
\pages 3--18
\mathnet{http://mi.mathnet.ru/mm3904}
\elib{https://elibrary.ru/item.asp?id=30462926}
\transl
\jour Math. Models Comput. Simul.
\yr 2018
\vol 10
\issue 3
\pages 322--332
\crossref{https://doi.org/10.1134/S2070048218030110}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048068471}
Linking options:
  • https://www.mathnet.ru/eng/mm3904
  • https://www.mathnet.ru/eng/mm/v29/i11/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025