Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2023, Volume 35, Number 1, Pages 51–58
DOI: https://doi.org/10.20948/mm-2023-01-04
(Mi mm4433)
 

Structural break detection in autoregressional conditional heteroskedasticity model: case of Student distribution

D. A. Borzykhab, A. A. Yazykovab

a Moscow Institute of Physics and Technology
b National Research University Higher School of Economics (NRU HSE)
References:
Abstract: We consider two methods of structural break detection in a piecewise generalized model of autoregressive conditional heteroscedasticity. The first method is based on Kolmogorov–Smirnov statistics and is called KS-method. The second one is based on the cumulative sums and is called KL-method. In this paper, we compare the KS- and KL-methods under the assumption of Student conditional distribution of random errors. The results of our Monte Carlo experiments were as follows: the KL-method lost to the KS-method both in terms of the average probability of first type error and in terms of the average power structural break detection.
Keywords: GARCH-t, t-distribution, Student distribution, volatility, change points, structural breaks, structural shifts, ICSS, CUSUM.
Funding agency Grant number
Russian Foundation for Basic Research 19-31-90169
Received: 17.10.2022
Revised: 09.11.2022
Accepted: 14.11.2022
English version:
Mathematical Models and Computer Simulations, 2023, Volume 15, Issue 4, Pages 654–659
DOI: https://doi.org/10.1134/S2070048223040026
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. A. Borzykh, A. A. Yazykov, “Structural break detection in autoregressional conditional heteroskedasticity model: case of Student distribution”, Mat. Model., 35:1 (2023), 51–58; Math. Models Comput. Simul., 15:4 (2023), 654–659
Citation in format AMSBIB
\Bibitem{BorYaz23}
\by D.~A.~Borzykh, A.~A.~Yazykov
\paper Structural break detection in autoregressional conditional heteroskedasticity model: case of Student distribution
\jour Mat. Model.
\yr 2023
\vol 35
\issue 1
\pages 51--58
\mathnet{http://mi.mathnet.ru/mm4433}
\crossref{https://doi.org/10.20948/mm-2023-01-04}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4566991}
\transl
\jour Math. Models Comput. Simul.
\yr 2023
\vol 15
\issue 4
\pages 654--659
\crossref{https://doi.org/10.1134/S2070048223040026}
Linking options:
  • https://www.mathnet.ru/eng/mm4433
  • https://www.mathnet.ru/eng/mm/v35/i1/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025