Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2024, Volume 36, Number 5, Pages 55–72
DOI: https://doi.org/10.20948/mm-2024-05-05
(Mi mm4564)
 

Development of porous media synthetic tomography methods

E. V. Lavrukhinab, D. A. Muryginb, K. V. Toropovc, A. Khlyupinda, K. M. Gerkea

a Schmidt Institute of Physics of the Earth of RAS
b Lomonosov Moscow State University
c PJSC Rosneft Oil Company
d Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region
References:
Abstract: X-ray computed tomography (XCT) is one of the key methods for studying the internal structure of porous samples, such as oil and gas bearing reservoir rocks. To model the properties of porous media based on XCT data, these images must be segmented. However, the correctness of the segmentation procedure cannot be verified due to lack of ground-truth data. This paper describes the development, testing and approbation of software for creating synthetic tomograms of porous media to solve the problem of the lack of validation or training segmentations. The created framework is based on the direct and inverse Radon transform. To test the proposed approach, we compared the speed and quality of key functions with existing analogues. Based on proxy samples obtained by segmenting XCT images, we created synthetic images of porous media from five phases: pore (air with negligible attenuation), kaolinite (Al$_2$Si$_2$O$_5$OH$_4$), silicon dioxide (SiO$_2$), calcium carbonate (CaCO$_3$), and iron disulfide (FeS$_2$). There is good agreement between the obtained synthetic data and the original XCT images. The developed technique allows solving the problem of creating labeled data for using machine learning in CT image segmentation tasks, as well as for testing any other methods for CT image segmentation.
Keywords: X-ray tomography, Radon transform, image segmentation, porous media.
Received: 31.07.2023
Revised: 14.09.2023
Accepted: 04.12.2023
Document Type: Article
Language: Russian
Citation: E. V. Lavrukhin, D. A. Murygin, K. V. Toropov, A. Khlyupin, K. M. Gerke, “Development of porous media synthetic tomography methods”, Mat. Model., 36:5 (2024), 55–72
Citation in format AMSBIB
\Bibitem{LavMurTor24}
\by E.~V.~Lavrukhin, D.~A.~Murygin, K.~V.~Toropov, A.~Khlyupin, K.~M.~Gerke
\paper Development of porous media synthetic tomography methods
\jour Mat. Model.
\yr 2024
\vol 36
\issue 5
\pages 55--72
\mathnet{http://mi.mathnet.ru/mm4564}
\crossref{https://doi.org/10.20948/mm-2024-05-05}
Linking options:
  • https://www.mathnet.ru/eng/mm4564
  • https://www.mathnet.ru/eng/mm/v36/i5/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025