Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2000, Volume 12, Number 5, Pages 49–54 (Mi mm870)  

X International Conference on Computing Mechanics and Advanced Applied Codes (Pereyaslavl- Zalesski)

The method of geometrical immersion and calculations for boundary-value elastic problem

V. P. Matveenko, N. A. Trufanov, I. N. Shardakov

Institute of Continuous Media Mechanics UB RAS
Abstract: The method of geometrical immersion (MGI) is intended to constuct the generalised solution of the boundary-value elastic problem in a region of complex space configuration by realization of the iteration sequence of the variational problems in a region of simple (canonical) form entirely involving the initial. Application of MGI permits us to obtain efficient numerical algorithms for solving elastic problems. Based on the finite element and finite difference methods, the formulation of the finite-dimensional analog of MGI has been performed. Differential analog of the variational equation MGI is the iteration procedure for boundary integral equation. High practical efficiency of the proposed numerical algorithms is supported by comparison of the numerical results obtained from the solution of some plane and three-dimensional problems by the MGI.
Bibliographic databases:
Language: Russian
Citation: V. P. Matveenko, N. A. Trufanov, I. N. Shardakov, “The method of geometrical immersion and calculations for boundary-value elastic problem”, Mat. Model., 12:5 (2000), 49–54
Citation in format AMSBIB
\Bibitem{MatTruSha00}
\by V.~P.~Matveenko, N.~A.~Trufanov, I.~N.~Shardakov
\paper The method of geometrical immersion and calculations for boundary-value elastic problem
\jour Mat. Model.
\yr 2000
\vol 12
\issue 5
\pages 49--54
\mathnet{http://mi.mathnet.ru/mm870}
\zmath{https://zbmath.org/?q=an:1027.74521}
Linking options:
  • https://www.mathnet.ru/eng/mm870
  • https://www.mathnet.ru/eng/mm/v12/i5/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025