Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 1, Pages 67–90
DOI: https://doi.org/10.17323/1609-4514-2005-5-1-67-90
(Mi mmj184)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the monodromy group of confluent linear equations

A. A. Glutsyukab

a Independent University of Moscow
b CNRS — Unit of Mathematics, Pure and Applied
Full-text PDF Citations (2)
References:
Abstract: We consider a linear analytic ordinary differential equation with complex time having a nonresonant irregular singular point. We study it as a limit of a generic family of equations with confluent Fuchsian singularities.
In 1984, V. I. Arnold asked the following question: Is it true that some operators from the monodromy group of the perturbed (Fuchsian) equation tend to Stokes operators of the nonperturbed irregular equation? Another version of this question was also proposed independently by J.-P. Ramis in 1988.
We consider only the case of Poincaré rank 1. We show (in dimension two) that, generically, no monodromy operator tends to a Stokes operator; on the other hand, in any dimension, the commutators of appropriate noninteger powers of the monodromy operators around singular points tend to Stokes operators.
Key words and phrases: Linear equation, irregular singularity, Stokes operators, Fuchsian singularity, monodromy, confluence.
Received: April 4, 2003
Bibliographic databases:
MSC: 34M35, 34M40
Language: English
Citation: A. A. Glutsyuk, “On the monodromy group of confluent linear equations”, Mosc. Math. J., 5:1 (2005), 67–90
Citation in format AMSBIB
\Bibitem{Glu05}
\by A.~A.~Glutsyuk
\paper On the monodromy group of confluent linear equations
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 1
\pages 67--90
\mathnet{http://mi.mathnet.ru/mmj184}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-1-67-90}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2153467}
\zmath{https://zbmath.org/?q=an:1099.34077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595200005}
Linking options:
  • https://www.mathnet.ru/eng/mmj184
  • https://www.mathnet.ru/eng/mmj/v5/i1/p67
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025