Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 1, Pages 91–103
DOI: https://doi.org/10.17323/1609-4514-2005-5-1-91-103
(Mi mmj185)
 

This article is cited in 43 scientific papers (total in 43 papers)

Canards at folded nodes

J. Guckenheimer, R. Haiduc

Cornell University
Full-text PDF Citations (43)
References:
Abstract: Folded singularities occur generically in singularly perturbed systems of differential equations with two slow variables and one fast variable. The folded singularities can be saddles, nodes or foci. Canards are trajectories that flow from the stable sheet of the slow manifold of these systems to the unstable sheet of their slow manifold. Benoît has given a comprehensive description of the flow near a folded saddle, but the phase portraits near folded nodes have been only partially described. This paper examines these phase portraits, presenting a picture of the flows in the case of a model system with a folded node. We prove that the number of canard solutions in these systems is unbounded.
Key words and phrases: Folded node, singularly perturbed system, slow-fast vector field.
Received: March 5, 2003
Bibliographic databases:
MSC: 34E15
Language: English
Citation: J. Guckenheimer, R. Haiduc, “Canards at folded nodes”, Mosc. Math. J., 5:1 (2005), 91–103
Citation in format AMSBIB
\Bibitem{GucHai05}
\by J.~Guckenheimer, R.~Haiduc
\paper Canards at folded nodes
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 1
\pages 91--103
\mathnet{http://mi.mathnet.ru/mmj185}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-1-91-103}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2153468}
\zmath{https://zbmath.org/?q=an:1092.34026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595200006}
Linking options:
  • https://www.mathnet.ru/eng/mmj185
  • https://www.mathnet.ru/eng/mmj/v5/i1/p91
  • This publication is cited in the following 43 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025