Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 4, Pages 703–729
DOI: https://doi.org/10.17323/1609-4514-2006-6-4-703-729
(Mi mmj266)
 

This article is cited in 1 scientific paper (total in 1 paper)

Central extensions of groups of symplectomorphisms

Yu. A. Neretinab

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b University of Vienna
Full-text PDF Citations (1)
References:
Abstract: We construct canonically defined central extensions of groups of symplectomorphisms. We show that these central extensions are nontrivial for tori of dimension $\ge 6$ and for two-dimensional surfaces of genus $\ge 3$.
Key words and phrases: Central extensions, symplectomorphisms, mapping class groups, Teichmüller group, Dehn twist, Calabi invariant, flux homomorphism.
Received: April 11, 2006
Bibliographic databases:
Language: English
Citation: Yu. A. Neretin, “Central extensions of groups of symplectomorphisms”, Mosc. Math. J., 6:4 (2006), 703–729
Citation in format AMSBIB
\Bibitem{Ner06}
\by Yu.~A.~Neretin
\paper Central extensions of groups of symplectomorphisms
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 4
\pages 703--729
\mathnet{http://mi.mathnet.ru/mmj266}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-4-703-729}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2291159}
\zmath{https://zbmath.org/?q=an:1148.57041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208596000005}
Linking options:
  • https://www.mathnet.ru/eng/mmj266
  • https://www.mathnet.ru/eng/mmj/v6/i4/p703
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025