Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 3, Pages 387–407
DOI: https://doi.org/10.17323/1609-4514-2007-7-3-387-407
(Mi mmj287)
 

This article is cited in 37 scientific papers (total in 37 papers)

New fewnomial upper bounds from Gale dual polynomial system

F. Bihana, F. Sottileb

a Universite de Savoie
b Texas A&M University
Full-text PDF Citations (37)
References:
Abstract: We show that there are fewer than $\frac{e^2+3}{4}2^{\binom{k}{2}}n^k$ positive solutions to a fewnomial system consisting of $n$ polynomials in $n$ variables having a total of $n+k+1$ distinct monomials. This is significantly smaller than Khovanskii's fewnomial bound of $2^{\binom{n+k}{2}}(n+1)^{n+k}$. We reduce the original system to a system of $k$ equations in $k$ variables which depends upon the vector configuration Gale dual to the exponents of the monomials in the original system. We then bound the number of solutions to this Gale system. We adapt these methods to show that a hypersurface in the positive orthant of $\mathbb R^n$ defined by a polynomial with $n+k+1$ monomials has at most $C(k)n^{k-1}$ compact connected components. Our results hold for polynomials with real exponents.
Key words and phrases: Gale dual, sparse polynomial.
Received: September 15, 2006
Bibliographic databases:
MSC: 14P99
Language: English
Citation: F. Bihan, F. Sottile, “New fewnomial upper bounds from Gale dual polynomial system”, Mosc. Math. J., 7:3 (2007), 387–407
Citation in format AMSBIB
\Bibitem{BihSot07}
\by F.~Bihan, F.~Sottile
\paper New fewnomial upper bounds from Gale dual polynomial system
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 3
\pages 387--407
\mathnet{http://mi.mathnet.ru/mmj287}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-3-387-407}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2343138}
\zmath{https://zbmath.org/?q=an:1148.14028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829400002}
Linking options:
  • https://www.mathnet.ru/eng/mmj287
  • https://www.mathnet.ru/eng/mmj/v7/i3/p387
  • This publication is cited in the following 37 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025