Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2022, Volume 22, Number 3, Pages 451–491
DOI: https://doi.org/10.17323/1609-4514-2022-22-3-451-491
(Mi mmj834)
 

This article is cited in 1 scientific paper (total in 1 paper)

Golden mean Siegel disk universality and renormalization

Denis Gaidasheva, Michael Yampolskyb

a Uppsala University, Uppsala, Sweden
b University of Toronto, Toronto, Canada
Full-text PDF Citations (1)
References:
Abstract: We provide a computer-assisted proof of one of the central open questions in one-dimensional renormalization theory – universality of the golden-mean Siegel disks. We further show that for every function in the stable manifold of the golden-mean renormalization fixed point the boundary of the Siegel disk is a quasicircle which coincides with the closure of the critical orbit, and that the dynamics on the boundary of the Siegel disk is rigid. Furthermore, we extend the renormalization from one-dimensional analytic maps with a golden-mean Siegel disk to two-dimensional dissipative Hénon-like maps and show that the renormalization hyperbolicity result still holds in this setting.
Key words and phrases: renormalization, universality, Siegel disk, Henon-like map.
Document Type: Article
Language: English
Citation: Denis Gaidashev, Michael Yampolsky, “Golden mean Siegel disk universality and renormalization”, Mosc. Math. J., 22:3 (2022), 451–491
Citation in format AMSBIB
\Bibitem{GaiYam22}
\by Denis~Gaidashev, Michael~Yampolsky
\paper Golden mean Siegel disk universality and renormalization
\jour Mosc. Math.~J.
\yr 2022
\vol 22
\issue 3
\pages 451--491
\mathnet{http://mi.mathnet.ru/mmj834}
\crossref{https://doi.org/10.17323/1609-4514-2022-22-3-451-491}
Linking options:
  • https://www.mathnet.ru/eng/mmj834
  • https://www.mathnet.ru/eng/mmj/v22/i3/p451
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025