Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2022, Volume 22, Number 4, Pages 595–611
DOI: https://doi.org/10.17323/1609-4514-2022-22-4-595-611
(Mi mmj838)
 

This article is cited in 2 scientific papers (total in 2 papers)

Separatrices for real analytic vector fields in the plane

Eduardo Cabrera, Rogério Mol

Departamento de Matemática - ICEX, Universidade Federal de Minas Gerais, UFMG
Full-text PDF Citations (2)
References:
Abstract: Let $X$ be a germ of real analytic vector field at $(\mathbb{R}^{2},0)$ with an algebraically isolated singularity. We say that $X$ is a topological generalized curve if there are no topological saddle-nodes in its reduction of singularities. In this case, we prove that if either the order $\nu_{0}(X)$ or the Milnor number $\mu_{0}(X)$ is even, then $X$ has a formal separatrix, that is, a formal invariant curve at $0 \in \mathbb{R}^{2}$. This result is optimal, in the sense that these hypotheses do not assure the existence of a convergent separatrix.
Key words and phrases: real analytic vector field, formal and analytic separatrix, reduction of singularities, index of vector fields, polar invariants, center-focus vector field.
Document Type: Article
Language: English
Citation: Eduardo Cabrera, Rogério Mol, “Separatrices for real analytic vector fields in the plane”, Mosc. Math. J., 22:4 (2022), 595–611
Citation in format AMSBIB
\Bibitem{CabMol22}
\by Eduardo~Cabrera, Rog\'erio~Mol
\paper Separatrices for real analytic vector fields in the plane
\jour Mosc. Math.~J.
\yr 2022
\vol 22
\issue 4
\pages 595--611
\mathnet{http://mi.mathnet.ru/mmj838}
\crossref{https://doi.org/10.17323/1609-4514-2022-22-4-595-611}
Linking options:
  • https://www.mathnet.ru/eng/mmj838
  • https://www.mathnet.ru/eng/mmj/v22/i4/p595
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025