Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2022, Volume 22, Number 4, Pages 657–703
DOI: https://doi.org/10.17323/1609-4514-2022-22-4-657-703
(Mi mmj840)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the cone of effective surfaces on $\overline{\mathcal{A}}_3$

Samuel Grushevskya, Klaus Hulekb

a Mathematics Department, Stony Brook University, Stony Brook, NY 11794-3651, USA
b Institut für Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, 30060 Hannover, Germany
Full-text PDF Citations (1)
References:
Abstract: We determine five extremal effective rays of the four-dimensional cone of effective surfaces on the toroidal compactification $\overline{\mathcal{A}}_3$ of the moduli space ${\mathcal{A}}_3$ of complex principally polarized abelian threefolds, and we conjecture that the cone of effective surfaces is generated by these surfaces. As the surfaces we define can be defined in any genus $g\ge 3$, we further conjecture that they generate the cone of effective surfaces on the perfect cone compactification $\mathcal A_g^{\mathrm{Perf}}$ for any $g\ge 3$.
Key words and phrases: moduli spaces, abelian varieties, effective cycles, extremal rays.
Document Type: Article
MSC: Primary 14K10; Secondary 14E30, 14C25
Language: English
Citation: Samuel Grushevsky, Klaus Hulek, “On the cone of effective surfaces on $\overline{\mathcal{A}}_3$”, Mosc. Math. J., 22:4 (2022), 657–703
Citation in format AMSBIB
\Bibitem{GruHul22}
\by Samuel~Grushevsky, Klaus~Hulek
\paper On the cone of effective surfaces on $\overline{\mathcal{A}}_3$
\jour Mosc. Math.~J.
\yr 2022
\vol 22
\issue 4
\pages 657--703
\mathnet{http://mi.mathnet.ru/mmj840}
\crossref{https://doi.org/10.17323/1609-4514-2022-22-4-657-703}
Linking options:
  • https://www.mathnet.ru/eng/mmj840
  • https://www.mathnet.ru/eng/mmj/v22/i4/p657
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025