Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2022, Volume 22, Number 4, Pages 705–739
DOI: https://doi.org/10.17323/1609-4514-2022-22-4-705-739
(Mi mmj841)
 

Néron–Severi Lie algebra, autoequivalences of the derived category, and monodromy

Valery A. Luntsab

a Department of Mathematics, Indiana University, Bloomington, IN 47405,
b National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: Let $X$ be a smooth complex projective variety. The group of autoequivalences of the derived category of $X$ acts naturally on its singular cohomology $H^\bullet (X,\mathbb{Q})$ and we denote by $G^{\mathrm{eq}}(X)\subset \mathrm{Gl}(H^\bullet (X,\mathbb{Q}))$ its image. Let $\overline{G^{\mathrm{eq}}(X)}\subset \mathrm{Gl}(H^\bullet (X,\mathbb{Q})$ be its Zariski closure. We study the relation of the Lie algebra $\mathrm{Lie}\, \overline{G^{\mathrm{eq}}(X)}$ and the Néron–Severi Lie algebra $\mathfrak{g}_{\mathrm{NS}}(X)\subset \mathrm{End}\, (H(X,\mathbb{Q}))$ in case $X$ has trivial canonical line bundle.
At the same time for mirror symmetric families of (weakly) Calabi–Yau varieties we consider a conjecture of Kontsevich on the relation between the monodromy of one family and the group $G^{\mathrm{eq}}(X)$ for a very general member $X$ of the other family.
Key words and phrases: calabi–Yau varieties, derived categories, Néron–Severi Lie algebra, monodromy group.
Document Type: Article
MSC: 18G80, 14F08
Language: English
Citation: Valery A. Lunts, “Néron–Severi Lie algebra, autoequivalences of the derived category, and monodromy”, Mosc. Math. J., 22:4 (2022), 705–739
Citation in format AMSBIB
\Bibitem{Lun22}
\by Valery~A.~Lunts
\paper N\'eron--Severi Lie algebra, autoequivalences of the derived category, and monodromy
\jour Mosc. Math.~J.
\yr 2022
\vol 22
\issue 4
\pages 705--739
\mathnet{http://mi.mathnet.ru/mmj841}
\crossref{https://doi.org/10.17323/1609-4514-2022-22-4-705-739}
Linking options:
  • https://www.mathnet.ru/eng/mmj841
  • https://www.mathnet.ru/eng/mmj/v22/i4/p705
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025