Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2023, Volume 23, Number 1, Pages 113–120
DOI: https://doi.org/10.17323/1609-4514-2023-23-1-113-120
(Mi mmj848)
 

Homology group automorphisms of Riemann surfaces

Rubén A. Hidalgo

Departamento de Matemática y Estadística, Universidad de La Frontera, Temuco, Chile
References:
Abstract: If $\Gamma$ is a finitely generated Fuchsian group such that its derived subgroup $\Gamma'$ is co-compact and torsion free, then $S={\mathbb H}^{2}/\Gamma'$ is a closed Riemann surface of genus $g \geq 2$ admitting the abelian group $A=\Gamma/\Gamma'$ as a group of conformal automorphisms. We say that $A$ is a homology group of $S$. A natural question is if $S$ admits unique homology groups or not, in other words, if there are different Fuchsian groups $\Gamma_{1}$ and $\Gamma_{2}$ with $\Gamma_{1}'=\Gamma'_{2}$? It is known that if $\Gamma_{1}$ and $\Gamma_{2}$ are both of the same signature $(0;k,\dots,k)$, for some $k \geq 2$, then the equality $\Gamma_{1}'=\Gamma_{2}'$ ensures that $\Gamma_{1}=\Gamma_{2}$. Generalizing this, we observe that if $\Gamma_{j}$ has signature $(0;k_{j},\dots,k_{j})$ and $\Gamma_{1}'=\Gamma'_{2}$, then $\Gamma_{1}=\Gamma_{2}$. We also provide examples of surfaces $S$ with different homology groups. A description of the normalizer in ${\rm Aut}(S)$ of each homology group $A$ is also obtained.
Key words and phrases: riemann surface, automorphism, Fuchsian group.
Document Type: Article
MSC: 30F10, 30F40
Language: English
Citation: Rubén A. Hidalgo, “Homology group automorphisms of Riemann surfaces”, Mosc. Math. J., 23:1 (2023), 113–120
Citation in format AMSBIB
\Bibitem{Hid23}
\by Rub\'en~A.~Hidalgo
\paper Homology group automorphisms of Riemann surfaces
\jour Mosc. Math.~J.
\yr 2023
\vol 23
\issue 1
\pages 113--120
\mathnet{http://mi.mathnet.ru/mmj848}
\crossref{https://doi.org/10.17323/1609-4514-2023-23-1-113-120}
Linking options:
  • https://www.mathnet.ru/eng/mmj848
  • https://www.mathnet.ru/eng/mmj/v23/i1/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025