Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2023, Volume 23, Number 4, Pages 533–544
DOI: https://doi.org/10.17323/1609-4514-2023-23-4-533-544
(Mi mmj865)
 

This article is cited in 1 scientific paper (total in 1 paper)

Gradient-like diffeomorphisms and periodic vector fields

V. Z. Grines, L. M. Lerman

National Research University, “Higher School of Economics” (Nizhny Novgorod branch)
Full-text PDF Citations (1)
References:
Abstract: A class of gradient-like nonautonomous vector fields (NVFs) on a smooth closed manifold $M$ is studied and the following problems are solved: 1) can a gradient-like NVF be constructed by means of the nonautonomous suspension over a diffeomorphism of this manifold, and if so, under what conditions on the diffeomorphism? 2) let a diffeomorphism $f$ be gradient-like (see the definition in the text) and diffeotopic to the identity map $\mathrm{id}_M$, when the NVF obtained by means of the nonautonomous suspension over $f$ be gradient-like? Necessary and sufficient conditions to this have been found in the paper. All these questions arise, when studying NVFs on $M$ admitting the uniform classification and a description via combinatorial type invariants.
Key words and phrases: nonautonomous vector field, uniform equivalence, exponential dichotomy, gradient-like, nonautonomous suspension.
Document Type: Article
MSC: 34C40, 37B35, 37C60
Language: English
Citation: V. Z. Grines, L. M. Lerman, “Gradient-like diffeomorphisms and periodic vector fields”, Mosc. Math. J., 23:4 (2023), 533–544
Citation in format AMSBIB
\Bibitem{GriLer23}
\by V.~Z.~Grines, L.~M.~Lerman
\paper Gradient-like diffeomorphisms and periodic vector fields
\jour Mosc. Math.~J.
\yr 2023
\vol 23
\issue 4
\pages 533--544
\mathnet{http://mi.mathnet.ru/mmj865}
\crossref{https://doi.org/10.17323/1609-4514-2023-23-4-533-544}
Linking options:
  • https://www.mathnet.ru/eng/mmj865
  • https://www.mathnet.ru/eng/mmj/v23/i4/p533
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025