Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2022, Volume 83, Issue 1, Pages 87–179 (Mi mmo669)  

Quantum representation theory and Manin matrices I: The finite-dimensional case

A. V. Silantyevab

a Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow Region
b Dubna State University, Dubna, Moscow Reg.
References:
Abstract: We construct a theory that describes a quantum (non-commutative) analogue of representations within the framework of “non-commutative linear geometry” set out in the work of Manin [Quantum groups and noncommutative geometry, Univ. Montréal, Centre de Recherches Mathématiques, Montréal, QC, 1988]. For this purpose, the concept of an internal $\mathrm{hom}$-functor is generalized to the case of parameterized adjunctions, and we construct a general approach to representations of monoids for a symmetric monoidal category with a parameter subcategory. A quantum theory of representations is then obtained by applying this approach to the monoidal category of a certain class of graded algebras with the Manin product, where the parameterizing subcategory consists of connected finitely generated quadratic algebras. We formulate this theory in the language of Manin matrices. We also obtain quantum analogues of the direct sum and tensor product of representations. Finally, we give some examples of quantum representations.
Received: 24.09.2021
Revised: 26.03.2022
English version:
Transactions of the Moscow Mathematical Society, 2022, Volume 83, Pages 75–149
DOI: https://doi.org/10.1090/mosc/340
Document Type: Article
UDC: 512.579
Language: Russian
Citation: A. V. Silantyev, “Quantum representation theory and Manin matrices I: The finite-dimensional case”, Tr. Mosk. Mat. Obs., 83, no. 1, MCCME, M., 2022, 87–179; Trans. Moscow Math. Soc., 83 (2022), 75–149
Citation in format AMSBIB
\Bibitem{Sil22}
\by A.~V.~Silantyev
\paper Quantum representation theory and Manin matrices I: The finite-dimensional case
\serial Tr. Mosk. Mat. Obs.
\yr 2022
\vol 83
\issue 1
\pages 87--179
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo669}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2022
\vol 83
\pages 75--149
\crossref{https://doi.org/10.1090/mosc/340}
Linking options:
  • https://www.mathnet.ru/eng/mmo669
  • https://www.mathnet.ru/eng/mmo/v83/i1/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :59
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025