|
|
Trudy Moskovskogo Matematicheskogo Obshchestva, 2024, Volume 85, Issue 1, Pages 27–38
(Mi mmo691)
|
|
|
|
Unknotting Lagrangian $\mathrm{S}^1\times\mathrm{S}^{n-1}$ in $\mathbb{R}^{2n}$
S. Nemirovskiab a Fakultät für Mathematik, Ruhr-Universität Bochum, Germany
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Abstract:
Lagrangian embeddings $\mathrm{S}^1\times\mathrm{S}^{n-1}\hookrightarrow\mathbb{R}^{2n}$ are classified up to smooth isotopy for all $n\ge 3$. References: 22 entries.
Key words and phrases:
Lagrangian submanifold, smooth embedding, Luttinger surgery.
Received: 21.08.2024
Citation:
S. Nemirovski, “Unknotting Lagrangian $\mathrm{S}^1\times\mathrm{S}^{n-1}$ in $\mathbb{R}^{2n}$”, Tr. Mosk. Mat. Obs., 85, no. 1, MCCME, M., 2024, 27–38
Linking options:
https://www.mathnet.ru/eng/mmo691 https://www.mathnet.ru/eng/mmo/v85/i1/p27
|
|