Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2013, Volume 16, Number 1, Pages 189–197 (Mi mt246)  

This article is cited in 1 scientific paper (total in 1 paper)

A generalization of the Poisson integral formula for the functions harmonic and biharmonic in a ball

O. E. Yaremko

Penza State University, Penza, Russia
References:
Abstract: We construct an analytic solution to the problem of extension to the unit $N$-dimensional ball of the potential on its values on an interior sphere. The formula generalizes the conventional Poisson formula. Bavrin's results obtained for the two-dimensional case by methods of function theory are transferred to the $N$-dimensional case ($N\ge3$). We also exhibit a solution to a similar extension problem for some operator expressions depending on a potential known on an interior sphere. A connection is established between solutions to the moment problem on a segment and on a semiaxis.
Key words: potential extension, Poisson formula, the moment problem.
Received: 26.04.2012
English version:
Siberian Advances in Mathematics, 2014, Volume 24, Issue 3, Pages 222–227
DOI: https://doi.org/10.3103/S1055134414030080
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: O. E. Yaremko, “A generalization of the Poisson integral formula for the functions harmonic and biharmonic in a ball”, Mat. Tr., 16:1 (2013), 189–197; Siberian Adv. Math., 24:3 (2014), 222–227
Citation in format AMSBIB
\Bibitem{Yar13}
\by O.~E.~Yaremko
\paper A~generalization of the Poisson integral formula for the functions harmonic and biharmonic in a~ball
\jour Mat. Tr.
\yr 2013
\vol 16
\issue 1
\pages 189--197
\mathnet{http://mi.mathnet.ru/mt246}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3156679}
\transl
\jour Siberian Adv. Math.
\yr 2014
\vol 24
\issue 3
\pages 222--227
\crossref{https://doi.org/10.3103/S1055134414030080}
Linking options:
  • https://www.mathnet.ru/eng/mt246
  • https://www.mathnet.ru/eng/mt/v16/i1/p189
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:784
    Full-text PDF :310
    References:129
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025