|
Matematicheskie Trudy, 2022, Volume 25, Number 1, Pages 51–62 DOI: https://doi.org/10.33048/mattrudy.2022.25.102
(Mi mt659)
|
|
|
|
On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents
N. A. Bokayeva, Zh. M. Onerbekb a Eurasian National University named after L.N. Gumilyov, Astana
b Karaganda State Technical University
DOI:
https://doi.org/10.33048/mattrudy.2022.25.102
Abstract:
We consider the global Morrey-type spaces ${GM}_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$ with variable exponents $p(x)$, $\theta(x)$ and general function $w(x,r)$ defining these spaces. In the case of unbounded sets $\Omega\subset{\mathbb{R}}^{n}$, we prove boundedness of the Hardy–Littlewood maximal operator and potential type operator in these spaces. We prove Spanne-type results on the boundedness of the Riesz potential ${I}^{\alpha}$ in global Morrey-type spaces with variable exponent ${GM}_{p(\cdot),\theta(\cdot),w(\cdot)}(\Omega)$.
Key words:
boundedness, Riesz potential, fractional maximal operator, global Morrey-type spaces with variable exponent.
Received: 27.02.2022 Revised: 10.04.2022 Accepted: 12.05.2022
Citation:
N. A. Bokayev, Zh. M. Onerbek, “On the boundedness of the maximal and fractional maximal, potential operators in the Global Morrey-type spaces with variable exponents”, Mat. Tr., 25:1 (2022), 51–62
Linking options:
https://www.mathnet.ru/eng/mt659 https://www.mathnet.ru/eng/mt/v25/i1/p51
|
| Statistics & downloads: |
| Abstract page: | 149 | | Full-text PDF : | 66 | | References: | 53 |
|