|
Matematicheskie Trudy, 2022, Volume 25, Number 2, Pages 162–173 DOI: https://doi.org/10.33048/mattrudy.2022.25.207
(Mi mt673)
|
|
|
|
On distance-regular graphs of diameter $3$ with eigenvalue $0$
A. A. Makhnevab, I. N. Belousovba a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
DOI:
https://doi.org/10.33048/mattrudy.2022.25.207
Abstract:
Graph $\Gamma_i$ for a distance-regular graph $\Gamma$ of diameter $3$ can be strongly regular for $i=2$ or $i=3$. J. Koolen with coauthors found parameters of $\Gamma_2$ by the intersection array of graph $\Gamma$ (independently parameters were obtained by Makhnev A.A. and Paduchikh D.V.). In this case $\Gamma$ has eigenvalue $\theta=a_2-c_3$. In this paper it is consider graphs with eigenvalues $\theta_2=0$ and $\theta_3=a_2-c_3$. It is proved that $\Gamma$ has intersection array $\{yx+yz,yz-y,xy-x;1,x+z,yz\}$. Further if $a_2-c_3\ge -10$ then $\Gamma$ has intersection array $\{12,6,2;1,4,9\}$, $\{60,45,8;1,12,50\}$, $\{63,42,12;1,9,49\}$ or $\{72,45,16; 1,8,54\}$.
Key words:
strongly regular graph, distance-regular graph, eigenvalue.
Received: 21.01.2022 Revised: 10.09.2022 Accepted: 02.11.2022
Citation:
A. A. Makhnev, I. N. Belousov, “On distance-regular graphs of diameter $3$ with eigenvalue $0$”, Mat. Tr., 25:2 (2022), 162–173; Siberian Adv. Math., 33:1 (2023), 56–65
Linking options:
https://www.mathnet.ru/eng/mt673 https://www.mathnet.ru/eng/mt/v25/i2/p162
|
|