Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2022, Volume 25, Number 2, Pages 220–240
DOI: https://doi.org/10.33048/mattrudy.2022.25.210
(Mi mt676)
 

This article is cited in 1 scientific paper (total in 1 paper)

A priori estimates and Fredholm criteria for a class of regular hypoelliptic operators

A. G. Tumanyanab

a Russian–Armenian University, Erevan, 0051 Armenia
b Siemens Digital Industries Software, Erevan, 0038 Armenia
Full-text PDF (313 kB) Citations (1)
References:
DOI: https://doi.org/10.33048/mattrudy.2022.25.210
Abstract: We study the Fredholm property of regular hypoelliptic operators with special variable coefficients. In this paper, necessary and sufficient conditions are obtained for a priori estimates for differential operators acting in multianisotropic Sobolev spaces. Fredholm criteria are obtained for a wide class of regular hypoelliptic operators in multianisotropic weighted spaces in $\mathbb{R}^n$.
Key words: Fredholm operator, regular hypoelliptic operator, a priori estimate, regularizer, multianisotropic weighted space.
Received: 28.04.2022
Revised: 22.08.2022
Accepted: 02.11.2022
English version:
Siberian Advances in Mathematics, 2023, Volume 33, Issue 2, Pages 151–164
DOI: https://doi.org/10.1134/S1055134423020049
Document Type: Article
UDC: 517.956
Language: Russian
Citation: A. G. Tumanyan, “A priori estimates and Fredholm criteria for a class of regular hypoelliptic operators”, Mat. Tr., 25:2 (2022), 220–240; Siberian Adv. Math., 33:2 (2023), 151–164
Citation in format AMSBIB
\Bibitem{Tum22}
\by A.~G.~Tumanyan
\paper A priori estimates and Fredholm criteria for a class of regular hypoelliptic operators
\jour Mat. Tr.
\yr 2022
\vol 25
\issue 2
\pages 220--240
\mathnet{http://mi.mathnet.ru/mt676}
\transl
\jour Siberian Adv. Math.
\yr 2023
\vol 33
\issue 2
\pages 151--164
\crossref{https://doi.org/10.1134/S1055134423020049}
Linking options:
  • https://www.mathnet.ru/eng/mt676
  • https://www.mathnet.ru/eng/mt/v25/i2/p220
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025