Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2023, Volume 26, Number 2, Pages 44–61
DOI: https://doi.org/10.33048/mattrudy.2023.26.203
(Mi mt679)
 

Optimal quadrature formulas for curvilinear integrals of the first kind

V. L. Vaskevichab, I. M. Turgunovb

a Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
b Novosibirsk State University, Novosibirsk, 630090, Russia
References:
DOI: https://doi.org/10.33048/mattrudy.2023.26.203
Abstract: We consider the problem on optimal quadrature formulas for curvilinear integrals of the first kind that are exact for constant functions. This problem is reduced to the minimization problem for a quadratic form in many variables whose matrix is symmetric and positive definite. We prove that the objective quadratic function attains its minimum at a single point of the corresponding multi-dimensional space. Hence, for a prescribed set of nodes, there exists a unique optimal quadrature formula over a closed smooth contour, i.e., a formula with the least possible norm of the error functional in the conjugate space. We show that the tuple of weights of the optimal quadrature formula is a solution of a special nondegenerate system of linear algebraic equations.
Key words: quadrature formula, error functional, Sobolev space on a closed curve, embedding constant and function, optimal formula.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0008
The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
Received: 10.10.2023
Revised: 07.11.2023
Accepted: 20.11.2023
English version:
Siberian Advances in Mathematics, 2024, Volume 34, Issue 1, Pages 80–90
DOI: https://doi.org/10.1134/S1055134424010048
Document Type: Article
UDC: 517.518.23, 517.518.83, 519.651
Language: Russian
Citation: V. L. Vaskevich, I. M. Turgunov, “Optimal quadrature formulas for curvilinear integrals of the first kind”, Mat. Tr., 26:2 (2023), 44–61; Siberian Adv. Math., 34:1 (2024), 80–90
Citation in format AMSBIB
\Bibitem{VasTur23}
\by V.~L.~Vaskevich, I.~M.~Turgunov
\paper Optimal quadrature formulas for curvilinear integrals of the first kind
\jour Mat. Tr.
\yr 2023
\vol 26
\issue 2
\pages 44--61
\mathnet{http://mi.mathnet.ru/mt679}
\transl
\jour Siberian Adv. Math.
\yr 2024
\vol 34
\issue 1
\pages 80--90
\crossref{https://doi.org/10.1134/S1055134424010048}
Linking options:
  • https://www.mathnet.ru/eng/mt679
  • https://www.mathnet.ru/eng/mt/v26/i2/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025