Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2023, Volume 26, Number 2, Pages 129–137
DOI: https://doi.org/10.33048/mattrudy.2023.26.206
(Mi mt682)
 

The generating function is rational for the number of rooted forests in a circulant graph

U. P. Kamalovab, A. B. Kutbaevbc, A. D. Mednykhab

a Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
b Novosibirsk State University, Novosibirsk, 630090, Russia
c Nukus State Pedagogical Institute, Nukus, 230100, Uzbekistan
References:
DOI: https://doi.org/10.33048/mattrudy.2023.26.206
Abstract: We consider the generating function $\Phi$ for the number $f_\Gamma(n)$ of rooted spanning forests in the circulant graph $\Gamma$, where $\Phi(x)=\sum_{n=1}^\infty f_\Gamma(n)x^n$ and either $\Gamma=C_n(s_1,s_2,\dots,s_k)$ or $\Gamma=C_{2n}(s_1,s_2,\dots,s_k,n)$. We show that $\Phi$ is a rational function with integer coefficients that satisfies the condition $\Phi(x)=-\Phi(1/x)$. We illustrate this result by a series of examples.
Key words: rooted spanning forest, circulant graph, generating function.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0005
The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0005).
Received: 18.05.2023
Revised: 31.07.2023
Accepted: 05.10.2023
English version:
Siberian Advances in Mathematics, 2023, Volume 33, Issue 4, Pages 322–328
DOI: https://doi.org/10.1134/S1055134423040041
Document Type: Article
UDC: 519.1
Language: Russian
Citation: U. P. Kamalov, A. B. Kutbaev, A. D. Mednykh, “The generating function is rational for the number of rooted forests in a circulant graph”, Mat. Tr., 26:2 (2023), 129–137; Siberian Adv. Math., 33:4 (2023), 322–328
Citation in format AMSBIB
\Bibitem{KamKutMed23}
\by U.~P.~Kamalov, A.~B.~Kutbaev, A.~D.~Mednykh
\paper The generating function is rational for the number of rooted forests in a circulant graph
\jour Mat. Tr.
\yr 2023
\vol 26
\issue 2
\pages 129--137
\mathnet{http://mi.mathnet.ru/mt682}
\transl
\jour Siberian Adv. Math.
\yr 2023
\vol 33
\issue 4
\pages 322--328
\crossref{https://doi.org/10.1134/S1055134423040041}
Linking options:
  • https://www.mathnet.ru/eng/mt682
  • https://www.mathnet.ru/eng/mt/v26/i2/p129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :59
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025