Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2023, Volume 26, Number 1, Pages 3–25
DOI: https://doi.org/10.33048/mattrudy.2023.26.101
(Mi mt686)
 

To the Segal chronometric theory

V. N. Berestovskii

Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
References:
DOI: https://doi.org/10.33048/mattrudy.2023.26.101
Abstract: The author expounds or proves some results connected with Segal's chronometric theory. He gives short proofs of results about linear representation of the group of nondegenerate complex (2$\times$2)-matrices on the Minkowski space-time and on the universal covering of the Lie group of unitary (2$\times$2)-matrices, i.e., on the Einstein Universe, as well as about the Cayley transform of Lie algebras of Lie groups of unitary matrices into these groups. In comparison with the structure of conformal infinity for the Minkowski space, the structure of the set of unitary (2$\times$2)-matrices, which do not admit the Cayley transform, is found. Some problems are suggested.
Key words: Cayley transform, conformal group, conformal infinity, nonexceptional matrix, Pauli matrices, scale-extended Poincare group.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0006
The work was carried out within the framework of the State Assignment for the Sobolev Institute of Mathematics of the Siberian Branch of RAS (project No. FWNF-2022-0006).
Received: 20.01.2023
Revised: 20.03.2023
Accepted: 17.05.2023
English version:
Siberian Advances in Mathematics, 2023, Volume 33, Issue 3, Pages 165–180
DOI: https://doi.org/10.1134/S105513442303001X
Bibliographic databases:
Document Type: Article
UDC: 513: 533.9.101
Language: Russian
Citation: V. N. Berestovskii, “To the Segal chronometric theory”, Mat. Tr., 26:1 (2023), 3–25; Siberian Adv. Math., 33:3 (2023), 165–180
Citation in format AMSBIB
\Bibitem{Ber23}
\by V.~N.~Berestovskii
\paper To the Segal chronometric theory
\jour Mat. Tr.
\yr 2023
\vol 26
\issue 1
\pages 3--25
\mathnet{http://mi.mathnet.ru/mt686}
\elib{https://elibrary.ru/item.asp?id=54901437}
\transl
\jour Siberian Adv. Math.
\yr 2023
\vol 33
\issue 3
\pages 165--180
\crossref{https://doi.org/10.1134/S105513442303001X}
Linking options:
  • https://www.mathnet.ru/eng/mt686
  • https://www.mathnet.ru/eng/mt/v26/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025