|
Matematicheskie Trudy, 2023, Volume 26, Number 1, Pages 93–119 DOI: https://doi.org/10.33048/mattrudy.2023.26.105
(Mi mt690)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
The area of surfaces on sub-Lorentzian structures of depth two
M. B. Karmanova Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
DOI:
https://doi.org/10.33048/mattrudy.2023.26.105
Abstract:
For contact mappings of Carnot groups of depth two whose image is endowed with a sub-Lorentzian structure, we prove local properties of the surfaces-images and explicitly deduce a sub-Lorentzian analog of the area formula. The result in particular also holds for Lipschitz mappings in the sub-Riemannian sense.
Key words:
contact mapping, Carnot group, sub-Lorentzian structure, Hausdorff measure, area formula.
Received: 17.01.2023 Revised: 01.02.2023 Accepted: 17.05.2023
Citation:
M. B. Karmanova, “The area of surfaces on sub-Lorentzian structures of depth two”, Mat. Tr., 26:1 (2023), 93–119; Siberian Adv. Math., 33:3 (2023), 214–229
Linking options:
https://www.mathnet.ru/eng/mt690 https://www.mathnet.ru/eng/mt/v26/i1/p93
|
|