Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2023, Volume 26, Number 1, Pages 150–175
DOI: https://doi.org/10.33048/mattrudy.2023.26.108
(Mi mt693)
 

Estimates of solutions in a model of antiviral immune response

M. A. Skvortsovaab

a Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
b Novosibirsk State University, Novosibirsk, 630090, Russia
References:
DOI: https://doi.org/10.33048/mattrudy.2023.26.108
Abstract: We consider a model of antiviral immune response suggested by G.I. Marchuk. The model is described by a system of differential equations with several delays. We study asymptotic stability for a stationary solution of the system that corresponds to a completely healthy organism. We estimate the attraction set of this stationary solution. We also find estimates of solutions characterizing the stabilization rate at infinity. A Lyapunov–Krasovskii functional is used in the proof.
Key words: antiviral immune response model, delay differential equations, asymptotic stability, estimates of solutions, attraction set, Lyapunov–Krasovskii functional
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0008
The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
Received: 20.04.2023
Revised: 15.05.2023
Accepted: 17.05.2023
English version:
Siberian Advances in Mathematics, 2023, Volume 33, Issue 4, Pages 353–368
DOI: https://doi.org/10.1134/S1055134423040089
Bibliographic databases:
Document Type: Article
UDC: 517.929.4
Language: Russian
Citation: M. A. Skvortsova, “Estimates of solutions in a model of antiviral immune response”, Mat. Tr., 26:1 (2023), 150–175; Siberian Adv. Math., 33:4 (2023), 353–368
Citation in format AMSBIB
\Bibitem{Skv23}
\by M.~A.~Skvortsova
\paper Estimates of solutions in a model of antiviral immune response
\jour Mat. Tr.
\yr 2023
\vol 26
\issue 1
\pages 150--175
\mathnet{http://mi.mathnet.ru/mt693}
\elib{https://elibrary.ru/item.asp?id=54901444}
\transl
\jour Siberian Adv. Math.
\yr 2023
\vol 33
\issue 4
\pages 353--368
\crossref{https://doi.org/10.1134/S1055134423040089}
Linking options:
  • https://www.mathnet.ru/eng/mt693
  • https://www.mathnet.ru/eng/mt/v26/i1/p150
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025