Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2002, Volume 5, Number 1, Pages 18–45 (Mi mt97)  

This article is cited in 7 scientific papers (total in 7 papers)

The Rate of Convergence for Weighted Branching Processes

V. A. Vatutina, U. Röslerb, V. A. Topchiic

a Steklov Mathematical Institute, Russian Academy of Sciences
b Christian-Albrechts-Universität
c Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
References:
Abstract: We consider a normed branching process $W_n$, generalizing the classical Galton–Watson model, in which particles have random weights (not necessarily positive). It is assumed that the weight of the parent particle is included into the weight of each of its offspring as a factor. The convergence rate of $W_n$ to its limit $W$ is evaluated. We give conditions in terms of the factors such that $W$ belongs to the domain of attraction (or to the domain of normal attraction) of an $\alpha$-stable distribution with $\alpha\in(1,2]$.
Key words: weighted branching process, limit theorems, rate of convergence, domains of attraction and normal attraction of stable distributions.
Received: 20.08.2001
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: V. A. Vatutin, U. Rösler, V. A. Topchii, “The Rate of Convergence for Weighted Branching Processes”, Mat. Tr., 5:1 (2002), 18–45; Siberian Adv. Math., 12:4 (2002), 57–82
Citation in format AMSBIB
\Bibitem{VatRosTop02}
\by V.~A.~Vatutin, U.~R\"osler, V.~A.~Topchii
\paper The Rate of Convergence for Weighted Branching Processes
\jour Mat. Tr.
\yr 2002
\vol 5
\issue 1
\pages 18--45
\mathnet{http://mi.mathnet.ru/mt97}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1918893}
\zmath{https://zbmath.org/?q=an:1046.60076}
\transl
\jour Siberian Adv. Math.
\yr 2002
\vol 12
\issue 4
\pages 57--82
Linking options:
  • https://www.mathnet.ru/eng/mt97
  • https://www.mathnet.ru/eng/mt/v5/i1/p18
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:619
    Full-text PDF :201
    References:126
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025