|
Lagrange interpolation polynomials and orthogonal Fourier–Jacobi series
A. A. Privalov Stavropol' State Pedagogical Institute
Abstract:
Let $\alpha>-1$ and $\beta>-1$. Then a function $f(x)$, continuous on the segment $[-1; 1]$, exists such that the sequence of Lagrange interpolation polynomials constructed from the roots of Jacobi polynomials diverges almost everywhere on $[-1; 1]$, and, at the same time, the Fourier–Jacobi series of function $f(x)$ converges uniformly to $f(x)$ on any segment $[a; b]\subset(-1; 1)$.
Received: 20.10.1975
Citation:
A. A. Privalov, “Lagrange interpolation polynomials and orthogonal Fourier–Jacobi series”, Mat. Zametki, 20:2 (1976), 215–226; Math. Notes, 20:2 (1976), 679–685
Linking options:
https://www.mathnet.ru/eng/mzm9984 https://www.mathnet.ru/eng/mzm/v20/i2/p215
|
| Statistics & downloads: |
| Abstract page: | 240 | | Full-text PDF : | 111 | | References: | 4 | | First page: | 1 |
|