|
When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?
P. A. Krylov, E. G. Pakhomova Tomsk State University
Abstract:
Injectivity conditions for the homomorfism group $\operatorname{Hom}(A,B)$ regarded as a left module over the endomorfism ring of the group $B$ are found for arbitrary Abelian groups $A$ and $B$, where $B$ is nonreduced.
Received: 05.07.2002
Citation:
P. A. Krylov, E. G. Pakhomova, “When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?”, Mat. Zametki, 75:1 (2004), 100–108; Math. Notes, 75:1 (2004), 93–100
Linking options:
https://www.mathnet.ru/eng/mzm10https://doi.org/10.4213/mzm10 https://www.mathnet.ru/eng/mzm/v75/i1/p100
|
|