Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 4, Pages 507–516
DOI: https://doi.org/10.4213/mzm10192
(Mi mzm10192)
 

This article is cited in 8 scientific papers (total in 8 papers)

On the Spectrum of Well-Defined Restrictions and Extensions for the Laplace Operator

B. N. Biyarov

L. N. Gumilev Eurasian National University, Astana
Full-text PDF (464 kB) Citations (8)
References:
Abstract: The study of the spectral properties of operators generated by differential equations of hyperbolic or parabolic type with Cauchy initial data involve, as a rule, Volterra boundary-value problems that are well posed. But Hadamard's example shows that the Cauchy problem for the Laplace equation is ill posed. At present, not a single Volterra well-defined restriction or extension for elliptic-type equations is known. Thus, the following question arises: Does there exist a Volterra well-defined restriction of a maximal operator $\widehat{L}$ or a Volterra well-defined extension of a minimal operator $L_0$ generated by the Laplace operator? In the present paper, for a wide class of well-defined restrictions of the maximal operator $\widehat{L}$ and of well-defined extensions of the minimal operator $L_0$ generated by the Laplace operator, we prove a theorem stating that they cannot be Volterra.
Keywords: Laplace operator, maximal (minimal) operator, Volterra operator, Volterra well-defined restrictions and extensions of operators, Hilbert space, elliptic operator, Poisson operator.
Received: 07.11.2012
Revised: 23.08.2013
English version:
Mathematical Notes, 2014, Volume 95, Issue 4, Pages 463–470
DOI: https://doi.org/10.1134/S0001434614030183
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: B. N. Biyarov, “On the Spectrum of Well-Defined Restrictions and Extensions for the Laplace Operator”, Mat. Zametki, 95:4 (2014), 507–516; Math. Notes, 95:4 (2014), 463–470
Citation in format AMSBIB
\Bibitem{Biy14}
\by B.~N.~Biyarov
\paper On the Spectrum of Well-Defined Restrictions and Extensions for the Laplace Operator
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 4
\pages 507--516
\mathnet{http://mi.mathnet.ru/mzm10192}
\crossref{https://doi.org/10.4213/mzm10192}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3298903}
\elib{https://elibrary.ru/item.asp?id=21826474}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 4
\pages 463--470
\crossref{https://doi.org/10.1134/S0001434614030183}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457300018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899669087}
Linking options:
  • https://www.mathnet.ru/eng/mzm10192
  • https://doi.org/10.4213/mzm10192
  • https://www.mathnet.ru/eng/mzm/v95/i4/p507
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025